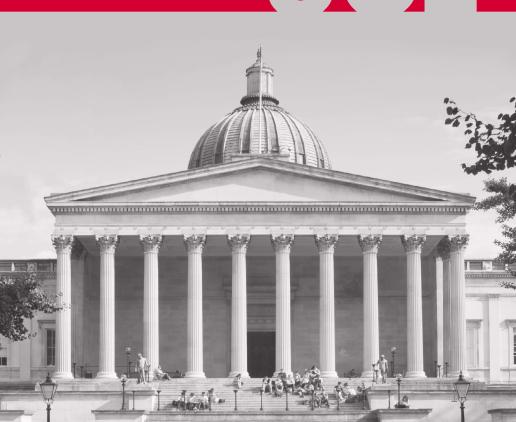


ACII 2019 Tutorial


Thermal Imaging-based Physiological and Affective Computing

Dr. Youngjun Cho

Assistant Professor Department of Computer Science University College London

youngjun.cho@ucl.ac.uk

Key reference

Physiological and Affective Computing through Thermal Imaging: A Survey

YOUNGJUN CHO, Department of Computer Science, University College London (UCL), United Kingdom NADIA BIANCHI-BERTHOUZE, Division of Psychology and Language Sciences, University College London (UCL), United Kingdom

ABSTRACT

Thermal imaging-based physiological and affective computing is an emerging research area enabling technologies to monitor our bodily functions and understand psychological and affective needs in a contactless manner. However, up to recently, research has been mainly carried out in very controlled lab settings. As small size and even low-cost versions of thermal video cameras have started to appear on the market, mobile thermal imaging is opening its door to ubiquitous and real-world applications. Here we review the literature on the use of thermal imaging to track changes in physiological cues relevant to affective computing and the technological requirements set so far. In doing so, we aim to establish computational and methodological pipelines from thermal images of the human skin to affective states and outline the research opportunities and challenges to be tackled to make ubiquitous real-life thermal imaging-based affect monitoring a possibility.

KEYWORDS

Thermal imaging, physiological computing, affective computing, human temperature, thermography

Cho and Berthouze (2019) arXiv:1908.10307

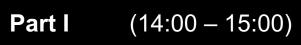
What do we learn today?

The emerging field of

Thermal Imaging-based Physiological and Affective computing (TIPA)

Part I (14:00 – 15:00)

Introduction to TIPA & Thermal Imaging Demo


Coffee break

Part II & III (15:30 – 17:30)

Computational Pipeline & Practical guide with TIPA opensource toolkit

Challenges and research opportunities

What do we learn today?

Introduction to TIPA & Thermal Imaging Demo

ACII 2019 Tutorial

Part I: Introduction to Thermal Imaging-based Physiological and Affective Computing

Dr. Youngjun Cho

Assistant Professor

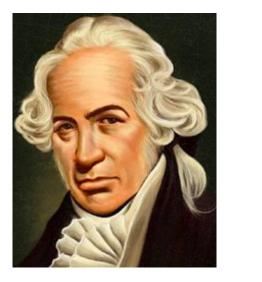
UCL

youngjun.cho@ucl.ac.uk

Global Disability Innovation Hub

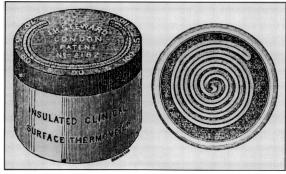
What do we learn during Part I?

We will introduce

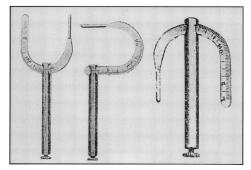

1) Thermal Imaging and its typical applications

2) Temperature responses to our affective states

3) Types of physiological signatures which can be measured through thermal imaging

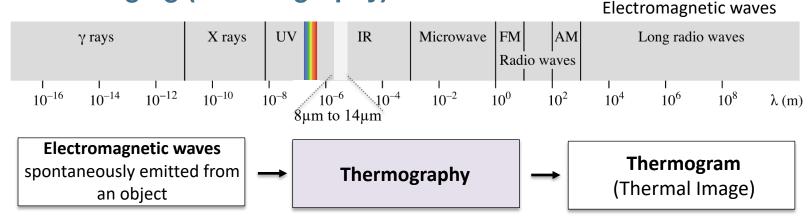

Introduction to Thermal Imaging and Applications

Earlier temperature measurements



The first mercury thermometer invented by **Daniel Gabriel Fahrenheit** (1714)

Surface thermometer (1877)



Curved thermometer (circa 1903)

Contact-less temperature measurement

Thermal Imaging (Thermography)

RGB Camera

Night time 샽

Thermal Camera

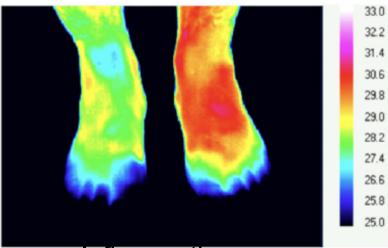
Fundamental advantages

Contact-free

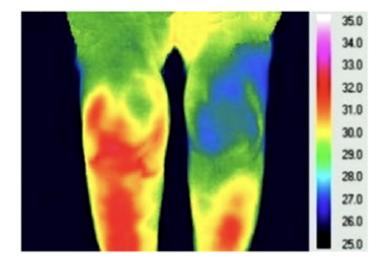
No need of light sources

Less privacy concerns

Cho et al. (2017) Biomedical Optics Express


Medical Applications of Thermal Imaging

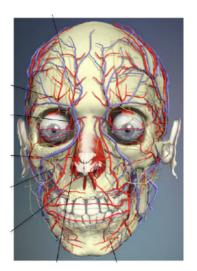
Diagnostic tools for tumors, Rheumatism, Complex Regional Pain Syndrome etc.


Medical Applications of Thermal Imaging

Diagnostic tools for tumors, Rheumatism, etc.

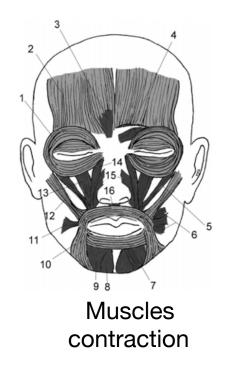
Inflammation following a sports injury

Ring and Ammer (2012)

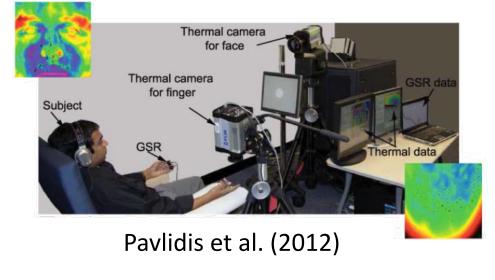

Rheumatoid arthritis

Thermal Imaging for Affective Computing

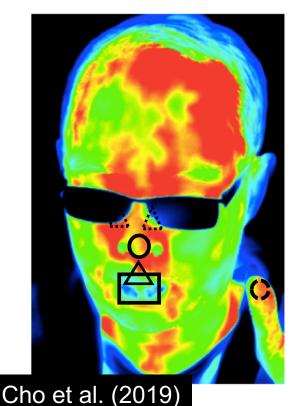
Facial Anatomy and Temperature Distribution



Facial Anatomy and Temperature Distribution

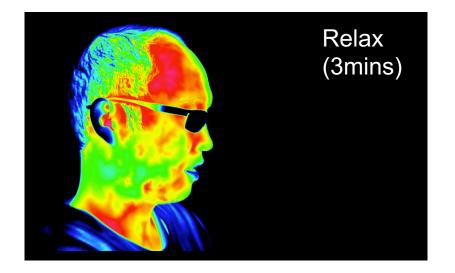

Blood artery network

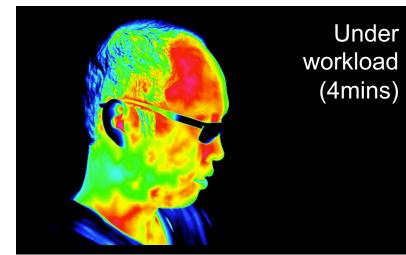
Waller et al. (2008) Palermo et al. (2013) Ioannou et al. (2014)

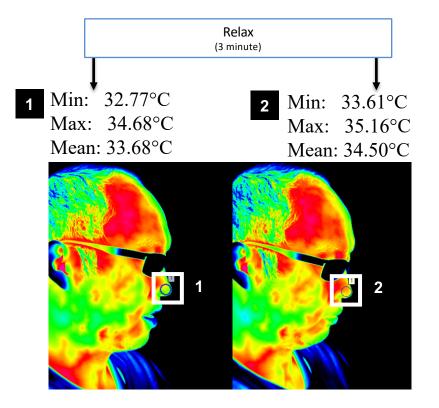

Typical setups for thermal imaging-based affective computing

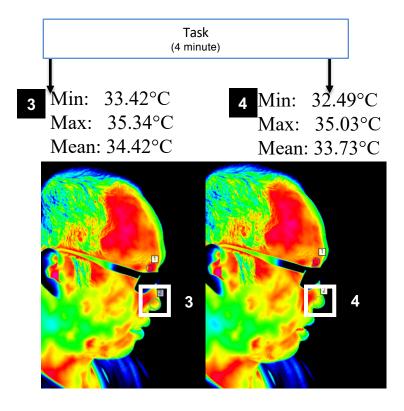
Jarlier et al. (2011)

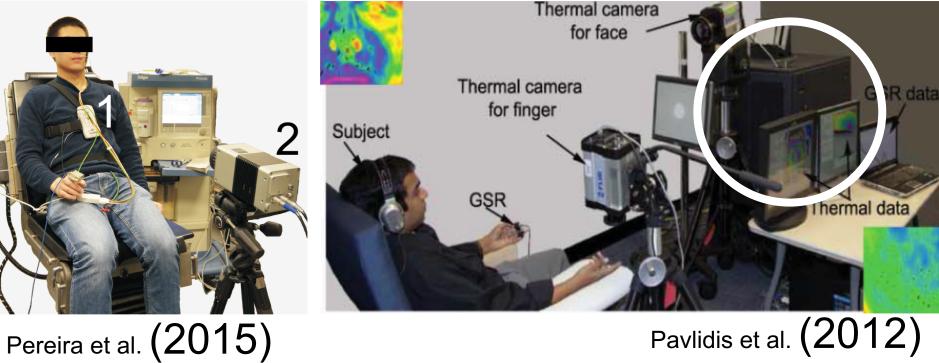
Temperature Directional Change along with Affective States


Mental Stress, Mental workload Genno et al. (1997), Or and Duffy (2007), **O** Nose tip Veltman et al. (2005), Engert et al. (2014), Cho et al. (2019) Fear **C** Finger tip Kistler et al. (1998) Startled Shastri et al. (2012) △ Upper lip 🕂 🖄 Periorbital 🕇 Pavlidis et al. (2001) **Sexual Arousal** Mouth ONose tip Periorbital Hahn et al. (2012) Love Whole face Salazar-López et al. (2015)


Example: changes in the nose tip temperature under mental workload




adamatomic.com/canabalt/



Example: changes in the nose tip temperature under cognitive load

Key limitation: Static thermal imaging

Pavlidis et al. (2012)


Advanced technology has emerged: Mobile, Low-cost Thermal Imaging device

Expensive static system

Low-cost mobile system

Advanced technology has emerged: Mobile, Low-cost Thermal Imaging device

Expensive static

Low-cost mobile

Cho et al. (2019)

Advanced technology has emerged: Mobile, Low-cost Thermal Imaging device

Expensive static

Cho et al. (2019)

Mobile thermal imaging possible

Integrated into a smartphone

Low-cost mobile

Specification, size and price of systems

Product	Spatial Resolution	Sampling Rate	Thermal Sensitivity (NETD)	Device Dimension	Weight	Price [±] (in August 2019)
⁺ FLIR One 3G	80x60	<8.7Hz (unsteady)	0.10°C**	68 x 34 x 14 mm ³	34.5g	\$199.99
⁺ FLIR One 2G	160x120	<8.7Hz (unsteady)	<0.10°C	68 x 34 x 14 mm ³	36.5g	Not available (in Aug 2019) £166.00 (about \$239 in May 2016)
⁺ Seek Thermal Compact	206x156	<9Hz (unsteady)	0.50°C	25.4 x 45 x 20 mm ³	14g	\$249.00

. . .

*FLIR A655sc	640x480	50Hz	<0.03°C	216 x 73 x 75 mm ³ (Without lens)	900g	\$24,662.43
*FLIR SC5000mb	640x512	100Hz	0.017°C	320x141x159 mm ³	3800g	Unknown
*FLIR SC7650	640x512	100Hz	0.020°C	253x130x168 mm ³ (Without lens)	4950g (Without lens)	Unknown

Cho et al. (2019) <u>https://arxiv.org/abs/1908.10307</u>

Thermal Imaging for Physiological Computing

Physiological Computing To enable technology that listens to our bodily functions and psychological needs

Cho et al. (2019)

Definition:

The branch of biology that deals with the normal functions of living organisms and their parts.

The way in which a living organism or bodily part functions.

Autonomic nervous system (ANS)

The part of the nervous system responsible for control of the bodily functions not consciously directed, such as breathing, the heartbeat, perspiration, sexual arousal and digestive processes.


- Parasympathetic nervous system
- Sympathetic nervous system
- (Enteric nervous system)

Parasympathetic system

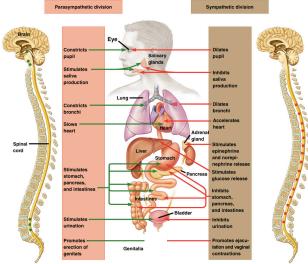
Brain

Spinal

- Heartbeat slows
- Blood pressure reduces
- Respiration levels ٠
- Your body experiences . cord visceral responses typical of periods of rest and relaxation
- **Rest and digest**

Sympathetic system

- Heart and blood pressure increases
- Respiration accelerates, blood sugar is released from the liver
- Adrenalin, noradrenalin are released from the adrenal glands.
- **Fight or flight**


000

1

0

Copyright © 2005 Pearson Education, Inc. Publishing as Pearson Benjamin Cummings. All rights reserved.

They respond to

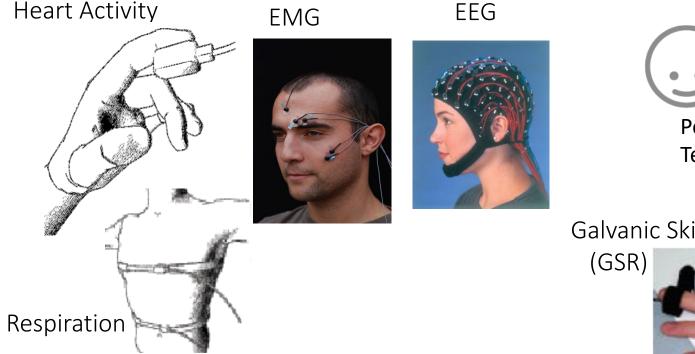
Copyright © 2005 Pearson Education, Inc. Publishing as Pearson Benjamin Cummings. All rights reserved.

Physical Activities (e.g. exercise)

Psychological Activities (e.g. Mental workload)

How to measure physiological signatures?

Heartbeat?


Muscular activity?

Breathing (Respiration)?

Sweat (Perspiration)?

Cortical activity?

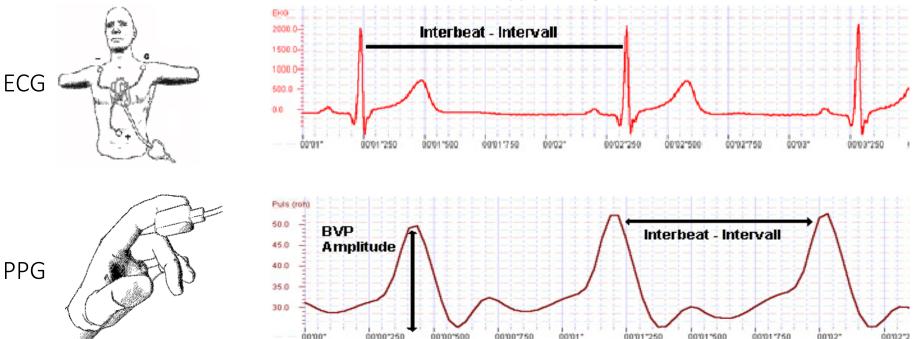
Simple, non-invasive techniques include:

Peripheral Temperature

Galvanic Skin response

Physiological measures: Fundamentals

•Register changes in biological systems

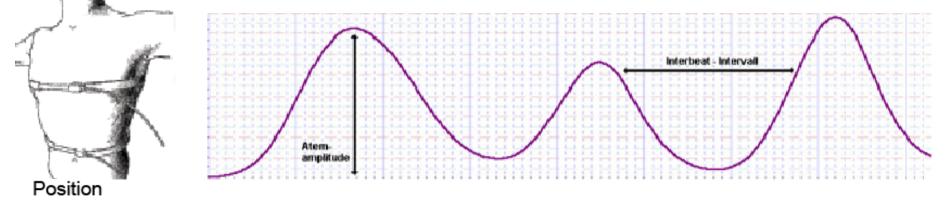

 Changes may be so subtle that cannot be identified at behavioural level

•Advantages:

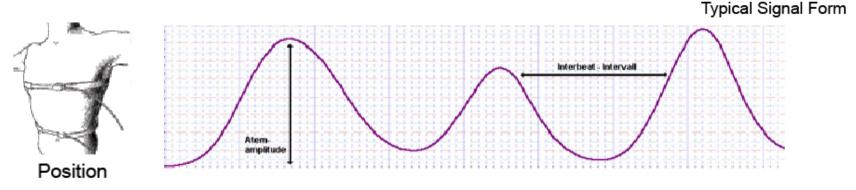
- •Hard to control deliberately
- Processed Continuously
- •Easily integrated with other measures (self-report and behaviour)

1 Cardiac pulse (Cardiovascular signature)

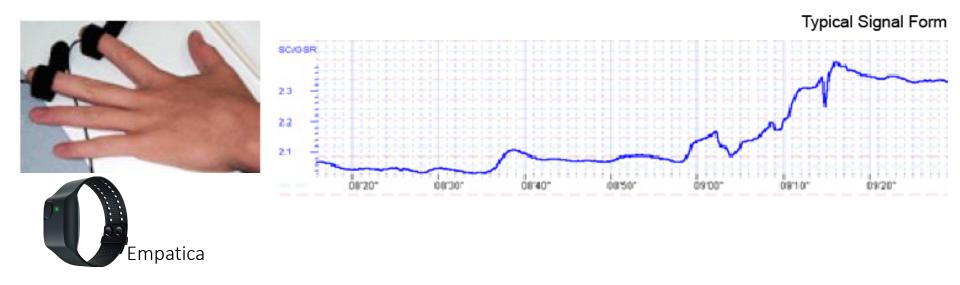
Typical signal forms



1 Cardiac pulse (Cardiovascular signature)


- Heart rate (HR): number of beats per unit of time (beats per minute bpm)
- Interbeat interval (IBI): time (ms) between two R wave peaks
- Heart Rate Variability (HRV) features (e.g. SDPP etc.)
- Resting: HR~72 bpm; IBI~830 ms
- Typical cues:
 - Decrease in HR: relaxation
 - Decreasing IBI, Increasing HR: stress, frustration, anger
 - Increase of attention causes short term HR deceleration. Arousal causes long term HR acceleration.
- Affected by environmental changes, physical activity, drugs (coffee, nicotine), age, gender; fitness; etc.

2 Breathing (Respiratory signature)


2 Breathing (Respiratory signature)

- Relative measure of chest expansion
- •On the chest or abdomen
- •Respiratory rate (RR) and relative respiration amplitude (RA)
- •Typical cues:
 - Increasing RR anger, joy, exercise Decreasing RR – relaxation, bliss

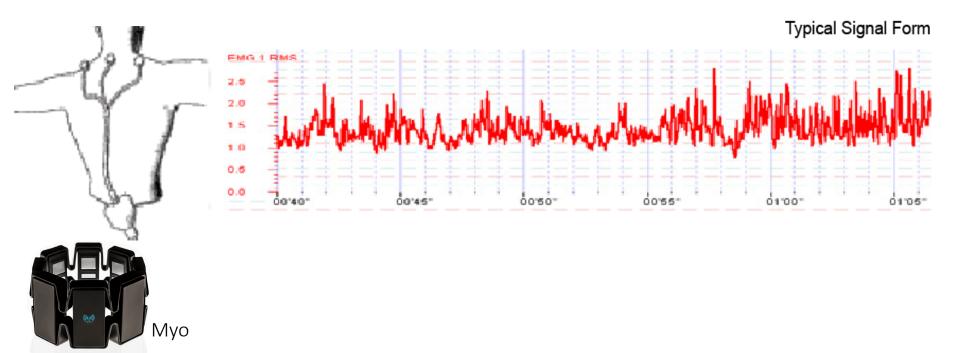
³ Galvanic Skin Response (Perspiratory signature)

Also called Skin Conductivity (SC) or Electrodermal Activity (EDA)

³ Galvanic Skin Response (Perspiratory signature)

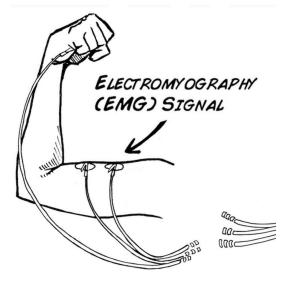
 Tonic SC: baseline level of skin conductance (SCL) in absence of any stimuli

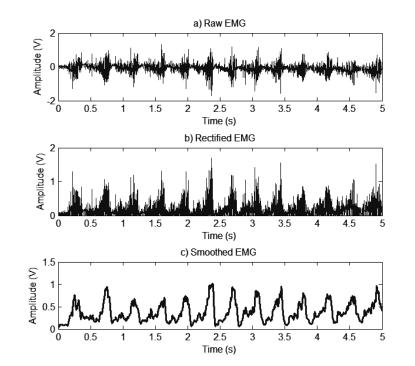
Different people have different levels (range 10-50 µS: micro-Siemens) Vary all the time according to psychological state and autonomic regulation

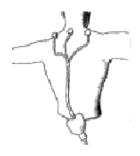

•Phasic SC: Changes in response to an event.

Can last 10-20 sec. before going back to baseline

• SCR Amplitude, SCR Latency, SCR Rise time, Half-recovery time

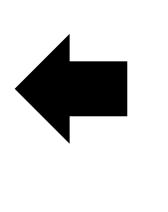

4 Muscular signature


Body Electromyography (EMG)



4 Muscular signature

Body Electromyography (EMG)


Typical EMG preprocessing

- 1) Rectification
- 2) Smoothing

1 Cardiovascular signature

- **2** Respiratory signature
- ³ Perspiratory signature

4 Muscular signature

Cho et al. (2019)

1 Cardiovascular signature

Vasoconstriction-induced changes (vasomotor)

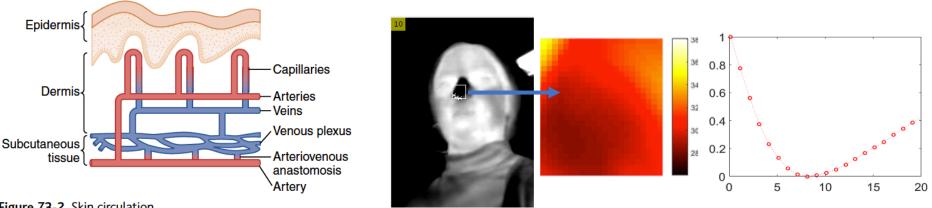
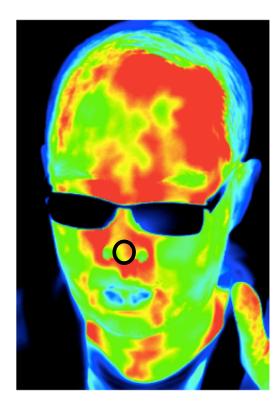
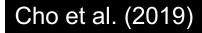



Figure 73-2 Skin circulation.

Hall and Guyton (2011)

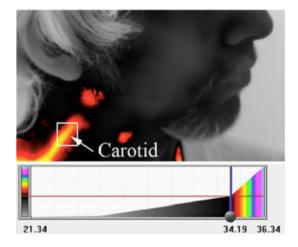
Instant Stress (JMIR Mental Health, Cho et al. 2019)

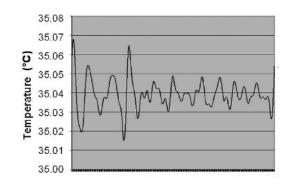
Remind you

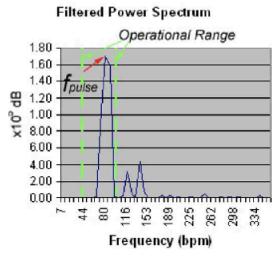


Mental Stress, Mental workload

O Nose tip

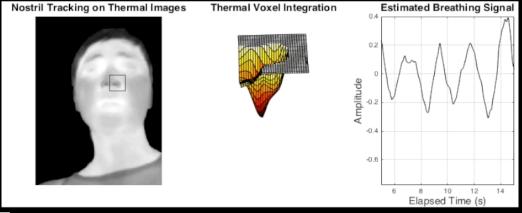



Genno et al. (1997), Or and Duffy (2007), Veltman et al. (2005), Engert et al. (2014), Cho et al. (2019)



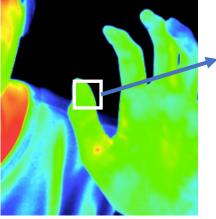
1 Cardiovascular signature

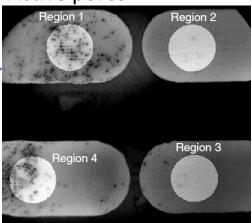
Cardiac Pulse rate (*low reliability)

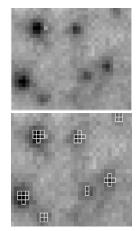


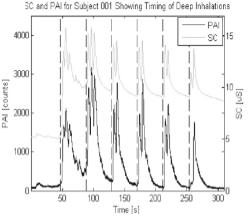
Garbey et al. (2007)

2 Respiratory signature


Breathing signals (*very accurate)


Cho et al. (2017) Biomedical Optics Express


3 Perspiratory signature


Sweat gland activation

Active pores

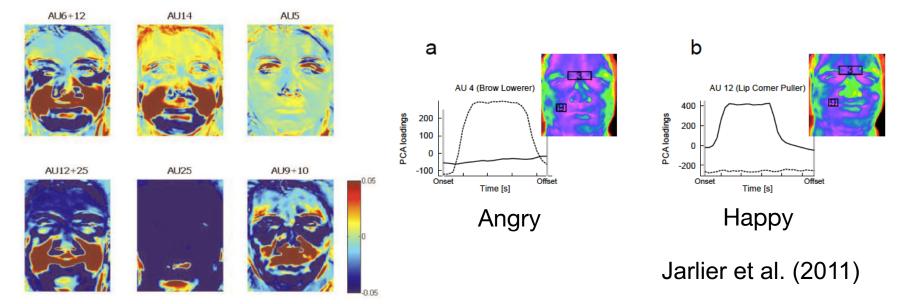
Krzywicki et al. (2014)

4 Muscular signature

Facial micro-muscle activation

Facial Action Coding System (FACS) ?

FACS categorizes the physical "micro facial muscle (Action Unit)" expression of emotions

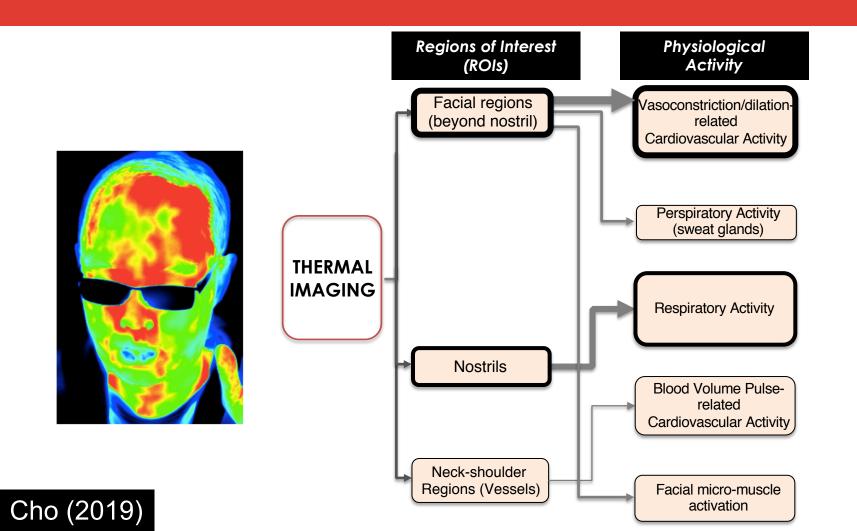

e.g. Emotion and Action Unit (right)

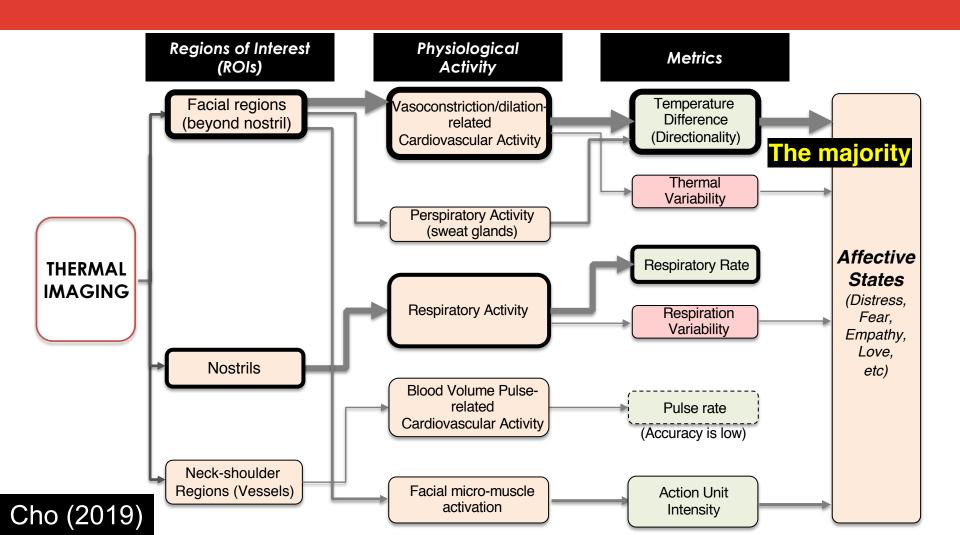
- P. Ekman and W. V. Friesen (1978)

Emotion	Action Unit	
Happiness	6+12	
Sadness	1+4+15	
Surprise	1+2+5B+26	
Fear	1+2+4+5+20 +26	
Anger	4+5+7+23	
Disgust	9+15+16	

4 Muscular signature

Facial micro-muscle activation





Cardiovascular signature Respiratory signature Perspiratory signature

4 Muscular signature

Cho et al. (2019)

Coffee Break (15:00 – 15:30)

Part II & III (15:30 – 17:30)

Computational Pipeline & Practical guide with TIPA opensource toolkit

Challenges and research opportunities

Any questions? & thermal imaging demo

Dr. Youngjun Cho

youngjuncho.com/tipa

Assistant Professor, Department of Computer Science, University College London (UCL)

Physiological Computing & Al Lab V Datasets Blog & Archive Home News Press Contact Home > TIPA Opensource project **TIPA Opensource project Thermal Imaging-based Physiological and 7** 25 commits [₽] 1 branch Affective computing (TIPA) **TIPA Opensource project** Branch: master -New pull request Created: August 2019 (very initial stage) Author(s): Dr. Youngjun Cho (Assistant Professor, Department of Computer Science, University College London, UCL) deepneuroscience Update README.md This project is to support the ACII 2019's tutorial on Thermal Imaging-based Physiological and Affective computing TIPA_library Full source code: https://github.com/deepneuroscience/TIPA Example dataset: Link data Temporary TIPA opensource project website: http://youngjun.cho/TIPA figures README.md **Key Reference** [1] Youngjun Cho and Nadia Bianchi-Berthouze. 2019. Physiological and Affective Computing TIPA_basic_run.ipynb through Thermal Imaging: A Survey. arXiv:1908.10307 [cs], http://arxiv.org/abs/1908.10307

Eurther Technical References

Brief guideline

1. Download Anaconda (latest version) - Python 3.7 (recommended)

https://www.anaconda.com/distribution/

2. Install basic libraries on the Conda console.

conda install -c conda-forge opencv

conda install scikit-learn

pip install --upgrade numpy

pip install --upgrade matplotlib

conda install -c anaconda scipy

• For your information

print(python_version())

3.7.3

print(np.version.version)

1.16.4

print(cv2.version)

3.4.2

scipy (1.3.1)

3. Run "TIPA_basic_run.ipynb" on the Jupyter notebook

You can find a basic instruction on the notebook.

1. Import TIPA libraries

In [9]: import sys

from platform import python_version
sys.path.insert(0,'./TIPA_library/')

from TIPA_library.main.data_preparation import *
from TIPA_library.main.thermal_image_processing import *
from TIPA_library.utils import timshow as tim
from TIPA_library.utils import rvs

2. Loading a raw sequence of thermal 2d matrices

The TIPA project mainly uses the TIPA frame protocol below by default.

For FLIR ONE (SDK) users, you can simply implement the code from the link below. https://github.com/deepneuroscience/DeepThermalImaging/tree/master/example%20code%20for%20FLIR%20One%20sdk

1 st	H x W pixel data		
1 2 h	H pixels	H pixels	H pixels
H pixels		H pixels	Time info.
	16 bit	W th	

Figure 1. TIPA (Thermal Imaging-based Physiological and Affective computing) Project Dataframe protocol

Example Dataset

We provide example data.

Download this dataset - <u>Link</u> Unzip, move them to a directory (./data) ./data/example_data.dat ./data/example_data_in_front_of_building.dat

In [10]: # The matrix size has to be known in advance. e.g.320 x 240
data = data_preparation_TIPA_protocol('./data/example_data.dat',320,240)
data = data_preparation_TIPA_protocol('./data/example_data_in_front_of_building.dat',320,240)
print(data.time_stamp)

Coffee Break (15:00 – 15:30)

PhD studentship available at UCL Computer Science in 2020

Call: talented students are invited to propose a PhD research project in areas related to **machine learning**, **physiological and affective computing**, with the aim to create novel assistive technology and boost disability innovation.

* You can also apply for the project described below.

Project Title Mobile thermography-based cardiovascular and cortical imaging for detecting anxiety in hospitalised children

Applications for 2020-21 are now being accepted

http://youngjuncho.com/news/phdstudentship/